Spatial realization of a Lie algebra and the Bar construction
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 201-205
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We prove that the spatial realization of a rational complete Lie algebra L, concentrated in degree 0, is isomorphic to the simplicial bar construction on the group, obtained from the Baker-Campbell-Hausdorff product on L.
Publié le :
Classification :
55P62, 17B55, 55U10
Keywords: rational homotopy theory, realization of Lie algebras, Lie models of simplicial sets, simplicial bar construction
Keywords: rational homotopy theory, realization of Lie algebras, Lie models of simplicial sets, simplicial bar construction
@article{TAC_2021_36_a6,
author = {Yves F\'elix and Daniel Tanr\'e},
title = {Spatial realization of a {Lie} algebra and the {Bar} construction},
journal = {Theory and applications of categories},
pages = {201--205},
year = {2021},
volume = {36},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a6/}
}
Yves Félix; Daniel Tanré. Spatial realization of a Lie algebra and the Bar construction. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 201-205. http://geodesic.mathdoc.fr/item/TAC_2021_36_a6/