Spatial realization of a Lie algebra and the Bar construction
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 201-205.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove that the spatial realization of a rational complete Lie algebra L, concentrated in degree 0, is isomorphic to the simplicial bar construction on the group, obtained from the Baker-Campbell-Hausdorff product on L.
Publié le :
Classification : 55P62, 17B55, 55U10
Keywords: rational homotopy theory, realization of Lie algebras, Lie models of simplicial sets, simplicial bar construction
@article{TAC_2021_36_a6,
     author = {Yves F\'elix and Daniel Tanr\'e},
     title = {Spatial realization of a {Lie} algebra and the {Bar} construction},
     journal = {Theory and applications of categories},
     pages = {201--205},
     publisher = {mathdoc},
     volume = {36},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a6/}
}
TY  - JOUR
AU  - Yves Félix
AU  - Daniel Tanré
TI  - Spatial realization of a Lie algebra and the Bar construction
JO  - Theory and applications of categories
PY  - 2021
SP  - 201
EP  - 205
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_36_a6/
LA  - en
ID  - TAC_2021_36_a6
ER  - 
%0 Journal Article
%A Yves Félix
%A Daniel Tanré
%T Spatial realization of a Lie algebra and the Bar construction
%J Theory and applications of categories
%D 2021
%P 201-205
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_36_a6/
%G en
%F TAC_2021_36_a6
Yves Félix; Daniel Tanré. Spatial realization of a Lie algebra and the Bar construction. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 201-205. http://geodesic.mathdoc.fr/item/TAC_2021_36_a6/