Voir la notice de l'article provenant de la source Theory and Applications of Categories website
In a non-pointed category E, a subobject which is normal to an equivalence relation is not necessarily an equivalence class. We elaborate this categorical distinction, with a special attention to the Mal'tsev context. Moreover, we introduce the notion of fibrant equipment, and we use it to establish some conditions ensuring the uniqueness of an equivalence relation to which a given subobject is normal, and to give a description of such a relation.
@article{TAC_2021_36_a2, author = {Dominique Bourn and Giuseppe Metere}, title = {A note on the categorical notions of normal subobject and of equivalence class}, journal = {Theory and applications of categories}, pages = {65--101}, publisher = {mathdoc}, volume = {36}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a2/} }
TY - JOUR AU - Dominique Bourn AU - Giuseppe Metere TI - A note on the categorical notions of normal subobject and of equivalence class JO - Theory and applications of categories PY - 2021 SP - 65 EP - 101 VL - 36 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2021_36_a2/ LA - en ID - TAC_2021_36_a2 ER -
Dominique Bourn; Giuseppe Metere. A note on the categorical notions of normal subobject and of equivalence class. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 65-101. http://geodesic.mathdoc.fr/item/TAC_2021_36_a2/