A note on the categorical notions of normal subobject and of equivalence class
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 65-101
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
In a non-pointed category E, a subobject which is normal to an equivalence relation is not necessarily an equivalence class. We elaborate this categorical distinction, with a special attention to the Mal'tsev context. Moreover, we introduce the notion of fibrant equipment, and we use it to establish some conditions ensuring the uniqueness of an equivalence relation to which a given subobject is normal, and to give a description of such a relation.
Publié le :
Classification :
18A32, 18C05, 18D30, 18E13, 08A30, 20J99
Keywords: normal subobject, equivalence class, connected pair of equivalence relations, unital, Mal'tsev and protomodular categories
Keywords: normal subobject, equivalence class, connected pair of equivalence relations, unital, Mal'tsev and protomodular categories
@article{TAC_2021_36_a2,
author = {Dominique Bourn and Giuseppe Metere},
title = {A note on the categorical notions of normal subobject and of equivalence class},
journal = {Theory and applications of categories},
pages = {65--101},
year = {2021},
volume = {36},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a2/}
}
Dominique Bourn; Giuseppe Metere. A note on the categorical notions of normal subobject and of equivalence class. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 65-101. http://geodesic.mathdoc.fr/item/TAC_2021_36_a2/