Latent Fibrations: Fibrations for Categories of Partial Maps
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 423-491.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Latent fibrations are an adaptation, appropriate for categories of partial maps (as presented by restriction categories), of the usual notion of fibration. This paper initiates the development of the basic theory of latent fibrations and explores some key examples. Latent fibrations cover a wide variety of examples, some of which are partial versions of standard fibrations, and some of which are particular to partial map categories (particularly those that arise in computational settings). Latent fibrations with various special properties are identified: hyperconnected latent fibrations, in particular, are shown to support the construction of a fibrational dual - important to reverse differential programming and, more generally, in the theory of lenses.
Publié le :
Classification : 18B99, 18D30
Keywords: latent fibrations, restriction categories, partial maps
@article{TAC_2021_36_a15,
     author = {Robin Cockett and Geoff Cruttwell and Jonathan Gallagher and Dorette Pronk},
     title = {Latent {Fibrations:}  {Fibrations} for {Categories} of {Partial} {Maps}},
     journal = {Theory and applications of categories},
     pages = {423--491},
     publisher = {mathdoc},
     volume = {36},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a15/}
}
TY  - JOUR
AU  - Robin Cockett
AU  - Geoff Cruttwell
AU  - Jonathan Gallagher
AU  - Dorette Pronk
TI  - Latent Fibrations:  Fibrations for Categories of Partial Maps
JO  - Theory and applications of categories
PY  - 2021
SP  - 423
EP  - 491
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_36_a15/
LA  - en
ID  - TAC_2021_36_a15
ER  - 
%0 Journal Article
%A Robin Cockett
%A Geoff Cruttwell
%A Jonathan Gallagher
%A Dorette Pronk
%T Latent Fibrations:  Fibrations for Categories of Partial Maps
%J Theory and applications of categories
%D 2021
%P 423-491
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_36_a15/
%G en
%F TAC_2021_36_a15
Robin Cockett; Geoff Cruttwell; Jonathan Gallagher; Dorette Pronk. Latent Fibrations:  Fibrations for Categories of Partial Maps. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 423-491. http://geodesic.mathdoc.fr/item/TAC_2021_36_a15/