Extensions and Glueing in Double Categories
Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 348-367.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let D be a double category with an initial object. Any cotabulator Gamma(v) of a vertical morphism v:X-->Y gives rise to an extension (i.e., short exact sequence) X-->Gamma(v)-->Y in the vertical bicategory VD. If D has "open cokernels" then every extension in VD is equivalent to one of this form. Examples include the double categories Loc, Topos, Pos, and Cat, whose objects are locales, toposes, posets, and small categories, respectively; and Gamma(v) is given by Artin-Wraith glueing along v in the first two cases, and by the collage of v in the others.
Publié le :
Classification : 18N10, 20E22, 18B25, 06D22, 18F70, 18D60, 18B35
Keywords: double categories, extensions, glueing, locales, toposes, posets, profunctors
@article{TAC_2021_36_a12,
     author = {Susan Niefield},
     title = {Extensions and {Glueing} in {Double} {Categories}},
     journal = {Theory and applications of categories},
     pages = {348--367},
     publisher = {mathdoc},
     volume = {36},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2021_36_a12/}
}
TY  - JOUR
AU  - Susan Niefield
TI  - Extensions and Glueing in Double Categories
JO  - Theory and applications of categories
PY  - 2021
SP  - 348
EP  - 367
VL  - 36
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2021_36_a12/
LA  - en
ID  - TAC_2021_36_a12
ER  - 
%0 Journal Article
%A Susan Niefield
%T Extensions and Glueing in Double Categories
%J Theory and applications of categories
%D 2021
%P 348-367
%V 36
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2021_36_a12/
%G en
%F TAC_2021_36_a12
Susan Niefield. Extensions and Glueing in Double Categories. Theory and applications of categories, The Rosebrugh Festschrift, Tome 36 (2021), pp. 348-367. http://geodesic.mathdoc.fr/item/TAC_2021_36_a12/