Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We prove that, given any reflective subfibration L on an ∞-topos E, there exists a reflective subfibration L' on E whose local maps are the L-separated maps, that is, the maps whose diagonals are L-local.
@article{TAC_2020_35_a7, author = {Marco Vergura}, title = {L'-localization in an \ensuremath{\infty}-topos}, journal = {Theory and applications of categories}, pages = {196--227}, publisher = {mathdoc}, volume = {35}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/} }
Marco Vergura. L'-localization in an ∞-topos. Theory and applications of categories, Tome 35 (2020), pp. 196-227. http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/