L'-localization in an ∞-topos
Theory and applications of categories, Tome 35 (2020), pp. 196-227.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We prove that, given any reflective subfibration L on an ∞-topos E, there exists a reflective subfibration L' on E whose local maps are the L-separated maps, that is, the maps whose diagonals are L-local.
Publié le :
Classification : 55P60, 18E35
Keywords: reflective subfibration, separated map, higher topos theory, localization theory, homotopy type theory
@article{TAC_2020_35_a7,
     author = {Marco Vergura},
     title = {L'-localization in an \ensuremath{\infty}-topos},
     journal = {Theory and applications of categories},
     pages = {196--227},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/}
}
TY  - JOUR
AU  - Marco Vergura
TI  - L'-localization in an ∞-topos
JO  - Theory and applications of categories
PY  - 2020
SP  - 196
EP  - 227
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/
LA  - en
ID  - TAC_2020_35_a7
ER  - 
%0 Journal Article
%A Marco Vergura
%T L'-localization in an ∞-topos
%J Theory and applications of categories
%D 2020
%P 196-227
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/
%G en
%F TAC_2020_35_a7
Marco Vergura. L'-localization in an ∞-topos. Theory and applications of categories, Tome 35 (2020), pp. 196-227. http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/