L'-localization in an ∞-topos
Theory and applications of categories, Tome 35 (2020), pp. 196-227
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We prove that, given any reflective subfibration L on an ∞-topos E, there exists a reflective subfibration L' on E whose local maps are the L-separated maps, that is, the maps whose diagonals are L-local.
Publié le :
Classification :
55P60, 18E35
Keywords: reflective subfibration, separated map, higher topos theory, localization theory, homotopy type theory
Keywords: reflective subfibration, separated map, higher topos theory, localization theory, homotopy type theory
@article{TAC_2020_35_a7,
author = {Marco Vergura},
title = {L'-localization in an \ensuremath{\infty}-topos},
journal = {Theory and applications of categories},
pages = {196--227},
year = {2020},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/}
}
Marco Vergura. L'-localization in an ∞-topos. Theory and applications of categories, Tome 35 (2020), pp. 196-227. http://geodesic.mathdoc.fr/item/TAC_2020_35_a7/