Morita invariance of equivariant Lusternik-Schnirelmann category and invariant topological complexity
Theory and applications of categories, Tome 35 (2020), pp. 179-195.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We use the homotopy invariance of equivariant principal bundles to prove that the equivariant A-category of Clapp and Puppe is invariant under Morita equivalence. As a corollary, we obtain that both the equivariant Lusternik-Schnirelmann category of a group action and the invariant topological complexity are invariant under Morita equivalence. This allows a definition of topological complexity for orbifolds.
Publié le :
Classification : 55M30, 55R91
Keywords: Topological complexity, Lusternik-Schnirelmann category
@article{TAC_2020_35_a6,
     author = {A. Angel and H. Colman and M. Grant and J. Oprea},
     title = {Morita invariance of
equivariant {Lusternik-Schnirelmann} category and  invariant topological complexity},
     journal = {Theory and applications of categories},
     pages = {179--195},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a6/}
}
TY  - JOUR
AU  - A. Angel
AU  - H. Colman
AU  - M. Grant
AU  - J. Oprea
TI  - Morita invariance of
equivariant Lusternik-Schnirelmann category and  invariant topological complexity
JO  - Theory and applications of categories
PY  - 2020
SP  - 179
EP  - 195
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a6/
LA  - en
ID  - TAC_2020_35_a6
ER  - 
%0 Journal Article
%A A. Angel
%A H. Colman
%A M. Grant
%A J. Oprea
%T Morita invariance of
equivariant Lusternik-Schnirelmann category and  invariant topological complexity
%J Theory and applications of categories
%D 2020
%P 179-195
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a6/
%G en
%F TAC_2020_35_a6
A. Angel; H. Colman; M. Grant; J. Oprea. Morita invariance of
equivariant Lusternik-Schnirelmann category and  invariant topological complexity. Theory and applications of categories, Tome 35 (2020), pp. 179-195. http://geodesic.mathdoc.fr/item/TAC_2020_35_a6/