A characterisation of the category of compact Hausdorff spaces
Theory and applications of categories, Tome 35 (2020), pp. 1871-1906.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We provide a characterisation of the category KH of compact Hausdorff spaces and continuous maps by means of categorical properties only. To this aim we introduce a notion of filtrality for coherent categories, relating certain lattices of subobjects to their Boolean centers. Our main result reads as follows: Up to equivalence, KH is the unique non-trivial well-pointed pretopos which is filtral and admits all set-indexed copowers of its terminal object.
Publié le :
Classification : 18F60, 54B30
Keywords: compact Hausdorff spaces, coherent category, pretopos, filtrality, Stone spaces, exact completion
@article{TAC_2020_35_a50,
     author = {Vincenzo Marra and Luca Reggio},
     title = {A characterisation of the category of compact {Hausdorff} spaces},
     journal = {Theory and applications of categories},
     pages = {1871--1906},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a50/}
}
TY  - JOUR
AU  - Vincenzo Marra
AU  - Luca Reggio
TI  - A characterisation of the category of compact Hausdorff spaces
JO  - Theory and applications of categories
PY  - 2020
SP  - 1871
EP  - 1906
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a50/
LA  - en
ID  - TAC_2020_35_a50
ER  - 
%0 Journal Article
%A Vincenzo Marra
%A Luca Reggio
%T A characterisation of the category of compact Hausdorff spaces
%J Theory and applications of categories
%D 2020
%P 1871-1906
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a50/
%G en
%F TAC_2020_35_a50
Vincenzo Marra; Luca Reggio. A characterisation of the category of compact Hausdorff spaces. Theory and applications of categories, Tome 35 (2020), pp. 1871-1906. http://geodesic.mathdoc.fr/item/TAC_2020_35_a50/