Metric Spaces of Extreme Points
Theory and applications of categories, Tome 35 (2020), pp. 1823-1832.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

It is shown that any compact metric space of diameter at most 2 embeds isometrically as a linearly independent set of extreme points of the unit ball of a separable Banach space. The proof illustrates how category theory can play a useful role in a problem of functional analysis.
Publié le :
Classification : 46B04, 46B50, 18A40
Keywords: free Banach space, Arens-Eells embedding, extreme point
@article{TAC_2020_35_a48,
     author = {Ernie Manes},
     title = {Metric {Spaces} of {Extreme} {Points}},
     journal = {Theory and applications of categories},
     pages = {1823--1832},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a48/}
}
TY  - JOUR
AU  - Ernie Manes
TI  - Metric Spaces of Extreme Points
JO  - Theory and applications of categories
PY  - 2020
SP  - 1823
EP  - 1832
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a48/
LA  - en
ID  - TAC_2020_35_a48
ER  - 
%0 Journal Article
%A Ernie Manes
%T Metric Spaces of Extreme Points
%J Theory and applications of categories
%D 2020
%P 1823-1832
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a48/
%G en
%F TAC_2020_35_a48
Ernie Manes. Metric Spaces of Extreme Points. Theory and applications of categories, Tome 35 (2020), pp. 1823-1832. http://geodesic.mathdoc.fr/item/TAC_2020_35_a48/