On bicolimits of C*-categories
Theory and applications of categories, Tome 35 (2020), pp. 1683-1725.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We discuss a number of general constructions concerning additive C*-categories, focussing in particular on establishing the existence of bicolimits. As an illustration of our results we show that balanced tensor products of module categories over C*-tensor categories exist without any finiteness assumptions.
Publié le :
Classification : 18N10, 46M15, 46L08
Keywords: C*-category, 2-category theory
@article{TAC_2020_35_a45,
     author = {Jamie Antoun and Christian Voigt},
     title = {On bicolimits of {C*-categories}},
     journal = {Theory and applications of categories},
     pages = {1683--1725},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a45/}
}
TY  - JOUR
AU  - Jamie Antoun
AU  - Christian Voigt
TI  - On bicolimits of C*-categories
JO  - Theory and applications of categories
PY  - 2020
SP  - 1683
EP  - 1725
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a45/
LA  - en
ID  - TAC_2020_35_a45
ER  - 
%0 Journal Article
%A Jamie Antoun
%A Christian Voigt
%T On bicolimits of C*-categories
%J Theory and applications of categories
%D 2020
%P 1683-1725
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a45/
%G en
%F TAC_2020_35_a45
Jamie Antoun; Christian Voigt. On bicolimits of C*-categories. Theory and applications of categories, Tome 35 (2020), pp. 1683-1725. http://geodesic.mathdoc.fr/item/TAC_2020_35_a45/