PROPs for involutive monoids and involutive bimonoids
Theory and applications of categories, Tome 35 (2020), pp. 1564-1575.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

The category of involutive non-commutative sets encodes the structure of an involution compatible with a (co)associative (co)multiplication. We prove that the category of involutive bimonoids in a symmetric monoidal category is equivalent to the category of algebras over a PROP constructed from the category of involutive non-commutative sets.
Publié le :
Classification : 16T10, 18M05, 18M85
Keywords: involutive non-commutative sets, bimonoid, bialgebras, PROP, symmetric monoidal categories
@article{TAC_2020_35_a41,
     author = {Daniel Graves},
     title = {PROPs for involutive monoids and involutive bimonoids},
     journal = {Theory and applications of categories},
     pages = {1564--1575},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a41/}
}
TY  - JOUR
AU  - Daniel Graves
TI  - PROPs for involutive monoids and involutive bimonoids
JO  - Theory and applications of categories
PY  - 2020
SP  - 1564
EP  - 1575
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a41/
LA  - en
ID  - TAC_2020_35_a41
ER  - 
%0 Journal Article
%A Daniel Graves
%T PROPs for involutive monoids and involutive bimonoids
%J Theory and applications of categories
%D 2020
%P 1564-1575
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a41/
%G en
%F TAC_2020_35_a41
Daniel Graves. PROPs for involutive monoids and involutive bimonoids. Theory and applications of categories, Tome 35 (2020), pp. 1564-1575. http://geodesic.mathdoc.fr/item/TAC_2020_35_a41/