Small categories of homological dimension one
Theory and applications of categories, Tome 35 (2020), pp. 137-154
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We derive three equivalent necessary conditions for a small category to have homological dimension one, generalizing a result of Novikov. As a consequence, any small cancellative category of homological dimension one is embeddable in a groupoid.
Publié le :
Classification :
18G20, 20M50
Keywords: homological dimension, cohomological dimension, small category, cancellative category, cyclic system, crown, supported crown, DCC category, Malcev sequence, embeddability into a group
Keywords: homological dimension, cohomological dimension, small category, cancellative category, cyclic system, crown, supported crown, DCC category, Malcev sequence, embeddability into a group
@article{TAC_2020_35_a4,
author = {Karimah Sweet and Charles Ching-An Cheng},
title = {Small categories of homological dimension one},
journal = {Theory and applications of categories},
pages = {137--154},
year = {2020},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a4/}
}
Karimah Sweet; Charles Ching-An Cheng. Small categories of homological dimension one. Theory and applications of categories, Tome 35 (2020), pp. 137-154. http://geodesic.mathdoc.fr/item/TAC_2020_35_a4/