Small categories of homological dimension one
Theory and applications of categories, Tome 35 (2020), pp. 137-154.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We derive three equivalent necessary conditions for a small category to have homological dimension one, generalizing a result of Novikov. As a consequence, any small cancellative category of homological dimension one is embeddable in a groupoid.
Publié le :
Classification : 18G20, 20M50
Keywords: homological dimension, cohomological dimension, small category, cancellative category, cyclic system, crown, supported crown, DCC category, Malcev sequence, embeddability into a group
@article{TAC_2020_35_a4,
     author = {Karimah Sweet and Charles Ching-An Cheng},
     title = {Small categories of homological dimension one},
     journal = {Theory and applications of categories},
     pages = {137--154},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a4/}
}
TY  - JOUR
AU  - Karimah Sweet
AU  - Charles Ching-An Cheng
TI  - Small categories of homological dimension one
JO  - Theory and applications of categories
PY  - 2020
SP  - 137
EP  - 154
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a4/
LA  - en
ID  - TAC_2020_35_a4
ER  - 
%0 Journal Article
%A Karimah Sweet
%A Charles Ching-An Cheng
%T Small categories of homological dimension one
%J Theory and applications of categories
%D 2020
%P 137-154
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a4/
%G en
%F TAC_2020_35_a4
Karimah Sweet; Charles Ching-An Cheng. Small categories of homological dimension one. Theory and applications of categories, Tome 35 (2020), pp. 137-154. http://geodesic.mathdoc.fr/item/TAC_2020_35_a4/