The law of excluded middle in the simplicial model of type theory
Theory and applications of categories, Tome 35 (2020), pp. 1546-1548
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We show that the law of excluded middle holds in Voevodsky's simplicial model of type theory. As a corollary, excluded middle is compatible with univalence.
Publié le :
Classification :
03B15 (primary), 55U10, 18C50
Keywords: Univalent foundations, homotopy type theory, simplicial sets, law of excluded middle, dependent type theory
Keywords: Univalent foundations, homotopy type theory, simplicial sets, law of excluded middle, dependent type theory
@article{TAC_2020_35_a39,
author = {Chris Kapulkin and Peter LeFanu Lumsdaine},
title = {The law of excluded middle in the simplicial model of type theory},
journal = {Theory and applications of categories},
pages = {1546--1548},
publisher = {mathdoc},
volume = {35},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a39/}
}
TY - JOUR AU - Chris Kapulkin AU - Peter LeFanu Lumsdaine TI - The law of excluded middle in the simplicial model of type theory JO - Theory and applications of categories PY - 2020 SP - 1546 EP - 1548 VL - 35 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2020_35_a39/ LA - en ID - TAC_2020_35_a39 ER -
Chris Kapulkin; Peter LeFanu Lumsdaine. The law of excluded middle in the simplicial model of type theory. Theory and applications of categories, Tome 35 (2020), pp. 1546-1548. http://geodesic.mathdoc.fr/item/TAC_2020_35_a39/