Lax orthogonal factorisations in ordered structures
Theory and applications of categories, Tome 35 (2020), pp. 1379-1423.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give an account of lax orthogonal factorisation systems on order-enriched categories. Among them, we define and characterise the KZ-reflective ones, in a way that mirrors the characterisation of reflective orthogonal factorisation systems. We use simple monads to construct lax orthogonal factorisation systems, such as one on the category of T_0 topological spaces closely related to continuous lattices.
Publié le :
Classification : Primary 18D05, 18A32. Secondary 55U35
Keywords: lax orthogonal factorization system, lax idempotent monad, order-enriched category, weak factorization system, reflective factorization system, continuous lattice
@article{TAC_2020_35_a35,
     author = {Maria Manuel Clementino and Ignacio L\'opez Franco},
     title = {Lax orthogonal factorisations in ordered structures},
     journal = {Theory and applications of categories},
     pages = {1379--1423},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a35/}
}
TY  - JOUR
AU  - Maria Manuel Clementino
AU  - Ignacio López Franco
TI  - Lax orthogonal factorisations in ordered structures
JO  - Theory and applications of categories
PY  - 2020
SP  - 1379
EP  - 1423
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a35/
LA  - en
ID  - TAC_2020_35_a35
ER  - 
%0 Journal Article
%A Maria Manuel Clementino
%A Ignacio López Franco
%T Lax orthogonal factorisations in ordered structures
%J Theory and applications of categories
%D 2020
%P 1379-1423
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a35/
%G en
%F TAC_2020_35_a35
Maria Manuel Clementino; Ignacio López Franco. Lax orthogonal factorisations in ordered structures. Theory and applications of categories, Tome 35 (2020), pp. 1379-1423. http://geodesic.mathdoc.fr/item/TAC_2020_35_a35/