Homotopies in Grothendieck fibrations
Theory and applications of categories, Tome 35 (2020), pp. 1312-1378.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define a natural 2-categorical structure on the base category of a large class of Grothendieck fibrations. Given any model category C, we apply this construction to a fibration whose fibers are the homotopy categories of the slice categories C/A, and we show that in the case C=Top, our construction applied to this fibration recovers the usual 2-category of spaces.
Publié le :
Classification : Primary: 18D30. Secondary: 55U35
Keywords: Grothendieck fibrations, hyperdoctrine, 2-category
@article{TAC_2020_35_a34,
     author = {Joseph Helfer},
     title = {Homotopies in {Grothendieck} fibrations},
     journal = {Theory and applications of categories},
     pages = {1312--1378},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a34/}
}
TY  - JOUR
AU  - Joseph Helfer
TI  - Homotopies in Grothendieck fibrations
JO  - Theory and applications of categories
PY  - 2020
SP  - 1312
EP  - 1378
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a34/
LA  - en
ID  - TAC_2020_35_a34
ER  - 
%0 Journal Article
%A Joseph Helfer
%T Homotopies in Grothendieck fibrations
%J Theory and applications of categories
%D 2020
%P 1312-1378
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a34/
%G en
%F TAC_2020_35_a34
Joseph Helfer. Homotopies in Grothendieck fibrations. Theory and applications of categories, Tome 35 (2020), pp. 1312-1378. http://geodesic.mathdoc.fr/item/TAC_2020_35_a34/