An intrinsic approach to the non-abelian tensor product via internal crossed squares
Theory and applications of categories, Tome 35 (2020), pp. 1268-1311.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We explain how, in the context of a semi-abelian category, the concept of an internal crossed square may be used to set up an intrinsic approach to the Brown-Loday non-abelian tensor product.
Publié le :
Classification : 18D40, 18E13, 20J15
Keywords: Semi-abelian category, pair of compatible actions, internal action, crossed module, crossed square, commutator, non-abelian tensor product
@article{TAC_2020_35_a33,
     author = {Davide di Micco and Tim Van der Linden},
     title = {An intrinsic approach to the non-abelian tensor product via internal crossed squares},
     journal = {Theory and applications of categories},
     pages = {1268--1311},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a33/}
}
TY  - JOUR
AU  - Davide di Micco
AU  - Tim Van der Linden
TI  - An intrinsic approach to the non-abelian tensor product via internal crossed squares
JO  - Theory and applications of categories
PY  - 2020
SP  - 1268
EP  - 1311
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a33/
LA  - en
ID  - TAC_2020_35_a33
ER  - 
%0 Journal Article
%A Davide di Micco
%A Tim Van der Linden
%T An intrinsic approach to the non-abelian tensor product via internal crossed squares
%J Theory and applications of categories
%D 2020
%P 1268-1311
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a33/
%G en
%F TAC_2020_35_a33
Davide di Micco; Tim Van der Linden. An intrinsic approach to the non-abelian tensor product via internal crossed squares. Theory and applications of categories, Tome 35 (2020), pp. 1268-1311. http://geodesic.mathdoc.fr/item/TAC_2020_35_a33/