An intrinsic approach to the non-abelian tensor product via internal crossed squares
Theory and applications of categories, Tome 35 (2020), pp. 1268-1311
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We explain how, in the context of a semi-abelian category, the concept of an internal crossed square may be used to set up an intrinsic approach to the Brown-Loday non-abelian tensor product.
Publié le :
Classification :
18D40, 18E13, 20J15
Keywords: Semi-abelian category, pair of compatible actions, internal action, crossed module, crossed square, commutator, non-abelian tensor product
Keywords: Semi-abelian category, pair of compatible actions, internal action, crossed module, crossed square, commutator, non-abelian tensor product
@article{TAC_2020_35_a33,
author = {Davide di Micco and Tim Van der Linden},
title = {An intrinsic approach to the non-abelian tensor product via internal crossed squares},
journal = {Theory and applications of categories},
pages = {1268--1311},
year = {2020},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a33/}
}
TY - JOUR AU - Davide di Micco AU - Tim Van der Linden TI - An intrinsic approach to the non-abelian tensor product via internal crossed squares JO - Theory and applications of categories PY - 2020 SP - 1268 EP - 1311 VL - 35 UR - http://geodesic.mathdoc.fr/item/TAC_2020_35_a33/ LA - en ID - TAC_2020_35_a33 ER -
Davide di Micco; Tim Van der Linden. An intrinsic approach to the non-abelian tensor product via internal crossed squares. Theory and applications of categories, Tome 35 (2020), pp. 1268-1311. http://geodesic.mathdoc.fr/item/TAC_2020_35_a33/