Lax limits of model categories
Theory and applications of categories, Tome 35 (2020), pp. 959-978.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For a diagram of simplicial combinatorial model categories, we show that the associated lax limit, endowed with the projective model structure, is a presentation of the lax limit of the underlying ∞-categories. Our approach can also allow for the indexing category to be simplicial, as long as the diagram factors through its homotopy category. Analogous results for the associated homotopy limit (and other intermediate limits) directly follow.
Publié le :
Classification : 18G55, 55U35
Keywords: Lax limit, model categories, strictification
@article{TAC_2020_35_a24,
     author = {Yonatan Harpaz},
     title = {Lax limits of model categories},
     journal = {Theory and applications of categories},
     pages = {959--978},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a24/}
}
TY  - JOUR
AU  - Yonatan Harpaz
TI  - Lax limits of model categories
JO  - Theory and applications of categories
PY  - 2020
SP  - 959
EP  - 978
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a24/
LA  - en
ID  - TAC_2020_35_a24
ER  - 
%0 Journal Article
%A Yonatan Harpaz
%T Lax limits of model categories
%J Theory and applications of categories
%D 2020
%P 959-978
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a24/
%G en
%F TAC_2020_35_a24
Yonatan Harpaz. Lax limits of model categories. Theory and applications of categories, Tome 35 (2020), pp. 959-978. http://geodesic.mathdoc.fr/item/TAC_2020_35_a24/