Shifted double Lie-Rinehart algebras
Theory and applications of categories, Tome 35 (2020), pp. 594-621.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We generalize the notions of shifted double Poisson and shifted double Lie-Rinehart structures to monoids in a symmetric monoidal abelian category. The main result is that an n-shifted double Lie-Rinehart structure on a pair (A,M) is equivalent to a non-shifted double Lie-Rinehart structure on the pair (A,M[-n]).
Publié le :
Classification : 14A22, 18M85, 18M05
Keywords: Noncommutative geometry, Double Poisson algebra, Double Lie-Rinehart algebra
@article{TAC_2020_35_a16,
     author = {Johan Leray},
     title = {Shifted double {Lie-Rinehart} algebras},
     journal = {Theory and applications of categories},
     pages = {594--621},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a16/}
}
TY  - JOUR
AU  - Johan Leray
TI  - Shifted double Lie-Rinehart algebras
JO  - Theory and applications of categories
PY  - 2020
SP  - 594
EP  - 621
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a16/
LA  - en
ID  - TAC_2020_35_a16
ER  - 
%0 Journal Article
%A Johan Leray
%T Shifted double Lie-Rinehart algebras
%J Theory and applications of categories
%D 2020
%P 594-621
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a16/
%G en
%F TAC_2020_35_a16
Johan Leray. Shifted double Lie-Rinehart algebras. Theory and applications of categories, Tome 35 (2020), pp. 594-621. http://geodesic.mathdoc.fr/item/TAC_2020_35_a16/