Shifted double Lie-Rinehart algebras
Theory and applications of categories, Tome 35 (2020), pp. 594-621
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We generalize the notions of shifted double Poisson and shifted double Lie-Rinehart structures to monoids in a symmetric monoidal abelian category. The main result is that an n-shifted double Lie-Rinehart structure on a pair (A,M) is equivalent to a non-shifted double Lie-Rinehart structure on the pair (A,M[-n]).
Publié le :
Classification :
14A22, 18M85, 18M05
Keywords: Noncommutative geometry, Double Poisson algebra, Double Lie-Rinehart algebra
Keywords: Noncommutative geometry, Double Poisson algebra, Double Lie-Rinehart algebra
@article{TAC_2020_35_a16,
author = {Johan Leray},
title = {Shifted double {Lie-Rinehart} algebras},
journal = {Theory and applications of categories},
pages = {594--621},
year = {2020},
volume = {35},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a16/}
}
Johan Leray. Shifted double Lie-Rinehart algebras. Theory and applications of categories, Tome 35 (2020), pp. 594-621. http://geodesic.mathdoc.fr/item/TAC_2020_35_a16/