Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We construct combinatorial model category structures on the categories of (marked) categories and (marked) preadditive categories, and we characterize (marked) additive categories as fibrant objects in a Bousfield localization of preadditive categories. These model category structures are used to present the corresponding infinity-categories obtained by inverting equivalences. We apply these results to explicitly calculate limits and colimits in these infinity-categories. The motivating application is a systematic construction of the equivariant coarse algebraic K-homology with coefficients in an additive category from its non-equivariant version.
@article{TAC_2020_35_a12, author = {Ulrich Bunke and Alexander Engel and Daniel Kasprowski and Christoph Winges}, title = {Homotopy theory with marked additive categories}, journal = {Theory and applications of categories}, pages = {371--416}, publisher = {mathdoc}, volume = {35}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a12/} }
TY - JOUR AU - Ulrich Bunke AU - Alexander Engel AU - Daniel Kasprowski AU - Christoph Winges TI - Homotopy theory with marked additive categories JO - Theory and applications of categories PY - 2020 SP - 371 EP - 416 VL - 35 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2020_35_a12/ LA - en ID - TAC_2020_35_a12 ER -
Ulrich Bunke; Alexander Engel; Daniel Kasprowski; Christoph Winges. Homotopy theory with marked additive categories. Theory and applications of categories, Tome 35 (2020), pp. 371-416. http://geodesic.mathdoc.fr/item/TAC_2020_35_a12/