Exact sequences in the enchilada category
Theory and applications of categories, Tome 35 (2020), pp. 350-370.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We define exact sequences in the enchilada category of C*-algebras and correspondences, and prove that the reduced-crossed-product functor is not exact for the enchilada categories. Our motivation was to determine whether we can have a better understanding of the Baum-Connes conjecture by using enchilada categories. Along the way we prove numerous results showing that the enchilada category is rather strange.
Publié le :
Classification : Primary 46L55, Secondary 18B99
Keywords: short exact sequence, C*-correspondence, exact functor, crossed product
@article{TAC_2020_35_a11,
     author = {M. Ery\"uzl\"u and S. Kaliszewski and John Quigg},
     title = {Exact sequences in the enchilada category},
     journal = {Theory and applications of categories},
     pages = {350--370},
     publisher = {mathdoc},
     volume = {35},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2020_35_a11/}
}
TY  - JOUR
AU  - M. Eryüzlü
AU  - S. Kaliszewski
AU  - John Quigg
TI  - Exact sequences in the enchilada category
JO  - Theory and applications of categories
PY  - 2020
SP  - 350
EP  - 370
VL  - 35
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2020_35_a11/
LA  - en
ID  - TAC_2020_35_a11
ER  - 
%0 Journal Article
%A M. Eryüzlü
%A S. Kaliszewski
%A John Quigg
%T Exact sequences in the enchilada category
%J Theory and applications of categories
%D 2020
%P 350-370
%V 35
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2020_35_a11/
%G en
%F TAC_2020_35_a11
M. Eryüzlü; S. Kaliszewski; John Quigg. Exact sequences in the enchilada category. Theory and applications of categories, Tome 35 (2020), pp. 350-370. http://geodesic.mathdoc.fr/item/TAC_2020_35_a11/