Distributive laws between the Three Graces
Theory and applications of categories, Tome 34 (2019), pp. 1317-1342.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

By the Three Graces we refer, following J.-L. Loday, to the algebraic operads Ass, Com, and Lie, each generated by a single binary operation; algebras over these operads are respectively associative, commutative associative, and Lie. We classify all distributive laws (in the categorical sense of Beck) between these three operads. Some of our results depend on the computer algebra system Maple, especially its packages LinearAlgebra and Groebner.
Publié le :
Classification : Primary 18D50. Secondary 13P10, 16R10, 16S10, 16S37, 16W10, 17B60, 17B63, 18-04, 68W30.
Keywords: Algebraic operads, distributive laws, Koszul duality, associative algebras, commutative associative algebras, Lie algebras, Poisson algebras, linear algebra over polynomial rings, Gr\"obner bases for polynomial ideals, computer algebra
@article{TAC_2019_34_a40,
     author = {Murray Bremner and Martin Markl},
     title = {Distributive laws between the {Three} {Graces}},
     journal = {Theory and applications of categories},
     pages = {1317--1342},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a40/}
}
TY  - JOUR
AU  - Murray Bremner
AU  - Martin Markl
TI  - Distributive laws between the Three Graces
JO  - Theory and applications of categories
PY  - 2019
SP  - 1317
EP  - 1342
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a40/
LA  - en
ID  - TAC_2019_34_a40
ER  - 
%0 Journal Article
%A Murray Bremner
%A Martin Markl
%T Distributive laws between the Three Graces
%J Theory and applications of categories
%D 2019
%P 1317-1342
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a40/
%G en
%F TAC_2019_34_a40
Murray Bremner; Martin Markl. Distributive laws between the Three Graces. Theory and applications of categories, Tome 34 (2019), pp. 1317-1342. http://geodesic.mathdoc.fr/item/TAC_2019_34_a40/