A model structure on prederivators for (∞,1)-categories
Theory and applications of categories, Tome 34 (2019), pp. 1220-1245.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

By theorems of Carlson and Renaudin, the theory of (∞,1)-categories embeds in that of prederivators. The purpose of this paper is to give a two-fold answer to the inverse problem: understanding which prederivators model (∞,1)-categories, either strictly or in a homotopical sense. First, we characterize which prederivators arise on the nose as prederivators associated to quasicategories. Next, we put a model structure on the category of prederivators and strict natural transformations, and prove a Quillen equivalence with the Joyal model structure for quasicategories.
Publié le :
Classification : 55U35, 18G30, 18A25
Keywords: rederivator, model structure, (∞, 1)-category, quasi-category
@article{TAC_2019_34_a38,
     author = {D. Fuentes-Keuthan and M. Kedziorek and M. Rovelli},
     title = {A model structure on prederivators for (\ensuremath{\infty},1)-categories},
     journal = {Theory and applications of categories},
     pages = {1220--1245},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a38/}
}
TY  - JOUR
AU  - D. Fuentes-Keuthan
AU  - M. Kedziorek
AU  - M. Rovelli
TI  - A model structure on prederivators for (∞,1)-categories
JO  - Theory and applications of categories
PY  - 2019
SP  - 1220
EP  - 1245
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a38/
LA  - en
ID  - TAC_2019_34_a38
ER  - 
%0 Journal Article
%A D. Fuentes-Keuthan
%A M. Kedziorek
%A M. Rovelli
%T A model structure on prederivators for (∞,1)-categories
%J Theory and applications of categories
%D 2019
%P 1220-1245
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a38/
%G en
%F TAC_2019_34_a38
D. Fuentes-Keuthan; M. Kedziorek; M. Rovelli. A model structure on prederivators for (∞,1)-categories. Theory and applications of categories, Tome 34 (2019), pp. 1220-1245. http://geodesic.mathdoc.fr/item/TAC_2019_34_a38/