A model structure on prederivators for (∞,1)-categories
Theory and applications of categories, Tome 34 (2019), pp. 1220-1245
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
By theorems of Carlson and Renaudin, the theory of (∞,1)-categories embeds in that of prederivators. The purpose of this paper is to give a two-fold answer to the inverse problem: understanding which prederivators model (∞,1)-categories, either strictly or in a homotopical sense. First, we characterize which prederivators arise on the nose as prederivators associated to quasicategories. Next, we put a model structure on the category of prederivators and strict natural transformations, and prove a Quillen equivalence with the Joyal model structure for quasicategories.
Publié le :
Classification :
55U35, 18G30, 18A25
Keywords: rederivator, model structure, (∞, 1)-category, quasi-category
Keywords: rederivator, model structure, (∞, 1)-category, quasi-category
@article{TAC_2019_34_a38,
author = {D. Fuentes-Keuthan and M. Kedziorek and M. Rovelli},
title = {A model structure on prederivators for (\ensuremath{\infty},1)-categories},
journal = {Theory and applications of categories},
pages = {1220--1245},
year = {2019},
volume = {34},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a38/}
}
D. Fuentes-Keuthan; M. Kedziorek; M. Rovelli. A model structure on prederivators for (∞,1)-categories. Theory and applications of categories, Tome 34 (2019), pp. 1220-1245. http://geodesic.mathdoc.fr/item/TAC_2019_34_a38/