The Zassenhaus lemma in star-regular categories
Theory and applications of categories, Tome 34 (2019), pp. 1196-1219
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
The Noether Isomorphism Theorems and the Zassenhaus Lemma from group theory have a non-pointed version in a suitable categorical context first considered by W. Tholen in his PhD thesis. This article leads to a unification of these results with the ones in the pointed categorical context previously considered by O.~Wyler, by working in the framework of \emph{star-regular} categories introduced by M.~Gran, Z.~Janelidze and A.~Ursini. Some concrete examples of categories where these results hold are examined in detail.
Publié le :
Classification :
18A20, 18A30, 18A32, 18C99, 16T05
Keywords: Factorisation systems, ideal of morphisms, normal category, star-regular category, ideal determined category, good theory of ideals, isomorphism theorems, Zassenhaus lemma, cocommutative Hopf algebra
Keywords: Factorisation systems, ideal of morphisms, normal category, star-regular category, ideal determined category, good theory of ideals, isomorphism theorems, Zassenhaus lemma, cocommutative Hopf algebra
@article{TAC_2019_34_a37,
author = {Olivette Ngaha Ngaha and Florence Sterck},
title = {The {Zassenhaus} lemma in star-regular categories},
journal = {Theory and applications of categories},
pages = {1196--1219},
publisher = {mathdoc},
volume = {34},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a37/}
}
Olivette Ngaha Ngaha; Florence Sterck. The Zassenhaus lemma in star-regular categories. Theory and applications of categories, Tome 34 (2019), pp. 1196-1219. http://geodesic.mathdoc.fr/item/TAC_2019_34_a37/