Finitely Presentable Algebras For Finitary Monads
Theory and applications of categories, Tome 34 (2019), pp. 1179-1195
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
For finitary regular monads T on locally finitely presentable categories we characterize the finitely presentable objects in the category of T-algebras in the style known from general algebra: they are precisely the algebras presentable by finitely many generators and finitely many relations.
Publié le :
Classification :
18C35, 18C20, 08C05
Keywords: Finitely presentable object, finitely generated object, finitary functor, regular monad
Keywords: Finitely presentable object, finitely generated object, finitary functor, regular monad
@article{TAC_2019_34_a36,
author = {J. Adamek and S. Milius and L. Sousa and T. Wissmann},
title = {Finitely {Presentable} {Algebras} {For} {Finitary} {Monads}},
journal = {Theory and applications of categories},
pages = {1179--1195},
publisher = {mathdoc},
volume = {34},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a36/}
}
TY - JOUR AU - J. Adamek AU - S. Milius AU - L. Sousa AU - T. Wissmann TI - Finitely Presentable Algebras For Finitary Monads JO - Theory and applications of categories PY - 2019 SP - 1179 EP - 1195 VL - 34 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2019_34_a36/ LA - en ID - TAC_2019_34_a36 ER -
J. Adamek; S. Milius; L. Sousa; T. Wissmann. Finitely Presentable Algebras For Finitary Monads. Theory and applications of categories, Tome 34 (2019), pp. 1179-1195. http://geodesic.mathdoc.fr/item/TAC_2019_34_a36/