Finitely Presentable Algebras For Finitary Monads
Theory and applications of categories, Tome 34 (2019), pp. 1179-1195.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

For finitary regular monads T on locally finitely presentable categories we characterize the finitely presentable objects in the category of T-algebras in the style known from general algebra: they are precisely the algebras presentable by finitely many generators and finitely many relations.
Publié le :
Classification : 18C35, 18C20, 08C05
Keywords: Finitely presentable object, finitely generated object, finitary functor, regular monad
@article{TAC_2019_34_a36,
     author = {J. Adamek and S. Milius and L. Sousa and T. Wissmann},
     title = {Finitely {Presentable} {Algebras} {For} {Finitary} {Monads}},
     journal = {Theory and applications of categories},
     pages = {1179--1195},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a36/}
}
TY  - JOUR
AU  - J. Adamek
AU  - S. Milius
AU  - L. Sousa
AU  - T. Wissmann
TI  - Finitely Presentable Algebras For Finitary Monads
JO  - Theory and applications of categories
PY  - 2019
SP  - 1179
EP  - 1195
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a36/
LA  - en
ID  - TAC_2019_34_a36
ER  - 
%0 Journal Article
%A J. Adamek
%A S. Milius
%A L. Sousa
%A T. Wissmann
%T Finitely Presentable Algebras For Finitary Monads
%J Theory and applications of categories
%D 2019
%P 1179-1195
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a36/
%G en
%F TAC_2019_34_a36
J. Adamek; S. Milius; L. Sousa; T. Wissmann. Finitely Presentable Algebras For Finitary Monads. Theory and applications of categories, Tome 34 (2019), pp. 1179-1195. http://geodesic.mathdoc.fr/item/TAC_2019_34_a36/