Characterization of left coextensive varieties of universal algebras
Theory and applications of categories, Tome 34 (2019), pp. 1036-1038.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

An extensive category can be defined as a category C with finite coproducts such that for each pair X,Y of objects in C, the canonical functor $+ : C/X \times C/Y \to C/(X + Y)$ is an equivalence. We say that a category C with finite products is left coextensive if the dual canonical functor $\times : X/C \times Y/C \to (X \times Y)/C$ is fully faithful. We then give a syntactical characterization of left coextensive varieties of universal algebras.
Publié le :
Classification : 18A30, 08B05
Keywords: Coextensivity, Universal Algebra, Syntactic Characterization
@article{TAC_2019_34_a31,
     author = {David Neal Broodryk},
     title = {Characterization of left coextensive varieties of universal algebras},
     journal = {Theory and applications of categories},
     pages = {1036--1038},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a31/}
}
TY  - JOUR
AU  - David Neal Broodryk
TI  - Characterization of left coextensive varieties of universal algebras
JO  - Theory and applications of categories
PY  - 2019
SP  - 1036
EP  - 1038
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a31/
LA  - en
ID  - TAC_2019_34_a31
ER  - 
%0 Journal Article
%A David Neal Broodryk
%T Characterization of left coextensive varieties of universal algebras
%J Theory and applications of categories
%D 2019
%P 1036-1038
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a31/
%G en
%F TAC_2019_34_a31
David Neal Broodryk. Characterization of left coextensive varieties of universal algebras. Theory and applications of categories, Tome 34 (2019), pp. 1036-1038. http://geodesic.mathdoc.fr/item/TAC_2019_34_a31/