Voir la notice de l'article provenant de la source Theory and Applications of Categories website
An extensive category can be defined as a category C with finite coproducts such that for each pair X,Y of objects in C, the canonical functor $+ : C/X \times C/Y \to C/(X + Y)$ is an equivalence. We say that a category C with finite products is left coextensive if the dual canonical functor $\times : X/C \times Y/C \to (X \times Y)/C$ is fully faithful. We then give a syntactical characterization of left coextensive varieties of universal algebras.
@article{TAC_2019_34_a31, author = {David Neal Broodryk}, title = {Characterization of left coextensive varieties of universal algebras}, journal = {Theory and applications of categories}, pages = {1036--1038}, publisher = {mathdoc}, volume = {34}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a31/} }
David Neal Broodryk. Characterization of left coextensive varieties of universal algebras. Theory and applications of categories, Tome 34 (2019), pp. 1036-1038. http://geodesic.mathdoc.fr/item/TAC_2019_34_a31/