A universal characterisation of codescent objects
Theory and applications of categories, Tome 34 (2019), pp. 684-713.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this work we define a 2-dimensional analogue of extranatural transformation and use these to characterise codescent objects. They will be seen as universal objects amongst pseudo-extranatural transformations in a similar manner in which coends are universal objects amongst extranatural transformations. Some composition lemmas concerning these transformations are introduced and a Fubini theorem for codescent objects is proven using the universal characterisation description.
Publié le :
Classification : 18D05, 18D10
Keywords: Codescent object, pseudo-extranatural, Fubini
@article{TAC_2019_34_a23,
     author = {Alexander S. Corner},
     title = {A universal characterisation of codescent objects},
     journal = {Theory and applications of categories},
     pages = {684--713},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a23/}
}
TY  - JOUR
AU  - Alexander S. Corner
TI  - A universal characterisation of codescent objects
JO  - Theory and applications of categories
PY  - 2019
SP  - 684
EP  - 713
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a23/
LA  - en
ID  - TAC_2019_34_a23
ER  - 
%0 Journal Article
%A Alexander S. Corner
%T A universal characterisation of codescent objects
%J Theory and applications of categories
%D 2019
%P 684-713
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a23/
%G en
%F TAC_2019_34_a23
Alexander S. Corner. A universal characterisation of codescent objects. Theory and applications of categories, Tome 34 (2019), pp. 684-713. http://geodesic.mathdoc.fr/item/TAC_2019_34_a23/