Strictification tensor product of 2-categories
Theory and applications of categories, Tome 34 (2019), pp. 635-661
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Given 2-categories C and D, let Lax (C,D) denote the 2-category of lax functors, lax natural transformations and modifications, and [C,D]_lnt its full sub-2-category of (strict) 2-functors. We give two isomorphic constructions of a 2-category C \boxtimes D satisfying Lax (C, Lax(D,E)) \cong [C \boxtimes D, E}_lnt, hence generalising the case of the free distributive law 1 \boxtimes 1. We also discuss dual constructions.
Publié le :
Classification :
18D05, 18D35, 18G30
Keywords: Lax functor, strictification, distributive law, lax Gray product, free monoid
Keywords: Lax functor, strictification, distributive law, lax Gray product, free monoid
@article{TAC_2019_34_a21,
author = {Branko Nikolic},
title = {Strictification tensor product of 2-categories},
journal = {Theory and applications of categories},
pages = {635--661},
year = {2019},
volume = {34},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a21/}
}
Branko Nikolic. Strictification tensor product of 2-categories. Theory and applications of categories, Tome 34 (2019), pp. 635-661. http://geodesic.mathdoc.fr/item/TAC_2019_34_a21/