Strictification tensor product of 2-categories
Theory and applications of categories, Tome 34 (2019), pp. 635-661.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Given 2-categories C and D, let Lax (C,D) denote the 2-category of lax functors, lax natural transformations and modifications, and [C,D]_lnt its full sub-2-category of (strict) 2-functors. We give two isomorphic constructions of a 2-category C \boxtimes D satisfying Lax (C, Lax(D,E)) \cong [C \boxtimes D, E}_lnt, hence generalising the case of the free distributive law 1 \boxtimes 1. We also discuss dual constructions.
Publié le :
Classification : 18D05, 18D35, 18G30
Keywords: Lax functor, strictification, distributive law, lax Gray product, free monoid
@article{TAC_2019_34_a21,
     author = {Branko Nikolic},
     title = {Strictification tensor product of 2-categories},
     journal = {Theory and applications of categories},
     pages = {635--661},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a21/}
}
TY  - JOUR
AU  - Branko Nikolic
TI  - Strictification tensor product of 2-categories
JO  - Theory and applications of categories
PY  - 2019
SP  - 635
EP  - 661
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a21/
LA  - en
ID  - TAC_2019_34_a21
ER  - 
%0 Journal Article
%A Branko Nikolic
%T Strictification tensor product of 2-categories
%J Theory and applications of categories
%D 2019
%P 635-661
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a21/
%G en
%F TAC_2019_34_a21
Branko Nikolic. Strictification tensor product of 2-categories. Theory and applications of categories, Tome 34 (2019), pp. 635-661. http://geodesic.mathdoc.fr/item/TAC_2019_34_a21/