On the relative projective space
Theory and applications of categories, Tome 34 (2019), pp. 58-79.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Let $(C,\otimes,1)$ be an abelian symmetric monoidal category satisfying certain exactness conditions. In this paper we define a presheaf $Proj{C}$ on the category of commutative algebras in $C$ and we prove that this functor is a $C$-scheme in the sense of B. Toen and M. Vaquie. We give another definition and prove that they give isomorphic $C$-schemes. This construction gives us a context of non-associative relative algebraic geometry. The most important example of the construction is the octonionic projective space.
Publié le :
Classification : 14A22, 18F99
Keywords: symmetric monoidal category, algebra object, line object, relative scheme
@article{TAC_2019_34_a2,
     author = {Matias Data and Juliana Osorio},
     title = {On the relative projective space},
     journal = {Theory and applications of categories},
     pages = {58--79},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/}
}
TY  - JOUR
AU  - Matias Data
AU  - Juliana Osorio
TI  - On the relative projective space
JO  - Theory and applications of categories
PY  - 2019
SP  - 58
EP  - 79
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/
LA  - en
ID  - TAC_2019_34_a2
ER  - 
%0 Journal Article
%A Matias Data
%A Juliana Osorio
%T On the relative projective space
%J Theory and applications of categories
%D 2019
%P 58-79
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/
%G en
%F TAC_2019_34_a2
Matias Data; Juliana Osorio. On the relative projective space. Theory and applications of categories, Tome 34 (2019), pp. 58-79. http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/