Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Let $(C,\otimes,1)$ be an abelian symmetric monoidal category satisfying certain exactness conditions. In this paper we define a presheaf $Proj{C}$ on the category of commutative algebras in $C$ and we prove that this functor is a $C$-scheme in the sense of B. Toen and M. Vaquie. We give another definition and prove that they give isomorphic $C$-schemes. This construction gives us a context of non-associative relative algebraic geometry. The most important example of the construction is the octonionic projective space.
@article{TAC_2019_34_a2, author = {Matias Data and Juliana Osorio}, title = {On the relative projective space}, journal = {Theory and applications of categories}, pages = {58--79}, publisher = {mathdoc}, volume = {34}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/} }
Matias Data; Juliana Osorio. On the relative projective space. Theory and applications of categories, Tome 34 (2019), pp. 58-79. http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/