On the relative projective space
Theory and applications of categories, Tome 34 (2019), pp. 58-79
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
Let $(C,\otimes,1)$ be an abelian symmetric monoidal category satisfying certain exactness conditions. In this paper we define a presheaf $Proj{C}$ on the category of commutative algebras in $C$ and we prove that this functor is a $C$-scheme in the sense of B. Toen and M. Vaquie. We give another definition and prove that they give isomorphic $C$-schemes. This construction gives us a context of non-associative relative algebraic geometry. The most important example of the construction is the octonionic projective space.
Publié le :
Classification :
14A22, 18F99
Keywords: symmetric monoidal category, algebra object, line object, relative scheme
Keywords: symmetric monoidal category, algebra object, line object, relative scheme
@article{TAC_2019_34_a2,
author = {Matias Data and Juliana Osorio},
title = {On the relative projective space},
journal = {Theory and applications of categories},
pages = {58--79},
year = {2019},
volume = {34},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/}
}
Matias Data; Juliana Osorio. On the relative projective space. Theory and applications of categories, Tome 34 (2019), pp. 58-79. http://geodesic.mathdoc.fr/item/TAC_2019_34_a2/