A note on the categorical congruence distributivity
Theory and applications of categories, Tome 34 (2019), pp. 438-455.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Having given a characterization of the categorical congruence modularity getting rid of the assumption that the ground category is regular, we give now a characterization of the categorical congruence distributivity. We have a look as well at the case where the congruence distributivity is only involved, in some sense, for a subclass $\Gamma$ of equivalence relations.
Publié le :
Classification : 08B10, 08C05, 18A20, 18A32
Keywords: Suprema of equivalence relations, congruence modularity, congruence distributivity
@article{TAC_2019_34_a15,
     author = {Dominique Bourn},
     title = {A note on the categorical congruence distributivity},
     journal = {Theory and applications of categories},
     pages = {438--455},
     publisher = {mathdoc},
     volume = {34},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a15/}
}
TY  - JOUR
AU  - Dominique Bourn
TI  - A note on the categorical congruence distributivity
JO  - Theory and applications of categories
PY  - 2019
SP  - 438
EP  - 455
VL  - 34
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2019_34_a15/
LA  - en
ID  - TAC_2019_34_a15
ER  - 
%0 Journal Article
%A Dominique Bourn
%T A note on the categorical congruence distributivity
%J Theory and applications of categories
%D 2019
%P 438-455
%V 34
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2019_34_a15/
%G en
%F TAC_2019_34_a15
Dominique Bourn. A note on the categorical congruence distributivity. Theory and applications of categories, Tome 34 (2019), pp. 438-455. http://geodesic.mathdoc.fr/item/TAC_2019_34_a15/