Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We continue the program of structural differential geometry that begins with the notion of a tangent category, an axiomatization of structural aspects of the tangent functor on the category of smooth manifolds. In classical geometry, having an affine structure on a manifold is equivalent to having a flat torsion-free connection on its tangent bundle. This equivalence allows us to define a category of affine objects associated to a tangent category and we show that the resulting category is also a tangent category, as are several related categories. As a consequence of some of these ideas we also give two new characterizations of flat torsion-free connections.We also consider 2-categorical structure associated to the category of tangent categories and demonstrate that assignment of the tangent category of affine objects to a tangent category induces a 2-comonad.
@article{TAC_2019_34_a14, author = {R. F. Blute and G. S. H. Cruttwell and R. B. B. Lucyshyn-Wright}, title = {Affine geometric spaces in tangent categories}, journal = {Theory and applications of categories}, pages = {405--437}, publisher = {mathdoc}, volume = {34}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2019_34_a14/} }
TY - JOUR AU - R. F. Blute AU - G. S. H. Cruttwell AU - R. B. B. Lucyshyn-Wright TI - Affine geometric spaces in tangent categories JO - Theory and applications of categories PY - 2019 SP - 405 EP - 437 VL - 34 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2019_34_a14/ LA - en ID - TAC_2019_34_a14 ER -
R. F. Blute; G. S. H. Cruttwell; R. B. B. Lucyshyn-Wright. Affine geometric spaces in tangent categories. Theory and applications of categories, Tome 34 (2019), pp. 405-437. http://geodesic.mathdoc.fr/item/TAC_2019_34_a14/