On finitely aligned left cancellative small categories, Zappa-Szep
products and Exel-Pardo algebras
Theory and applications of categories, Tome 33 (2018), pp. 1346-1406
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We consider Toeplitz and Cuntz-Krieger $C^*$-algebras associated with fin\-itely aligned left cancellative small categories. We pay special attention to the case where such a category arises as the Zappa-Szep product of a category and a group linked by a one-cocycle. As our main application, we obtain a new approach to Exel-Pardo algebras in the case of row-finite graphs. We also present some other ways of constructing $C^*$-algebras from left cancellative small categories and discuss their relationship.
Publié le :
Classification :
46L05, 46L55
Keywords: Groups, graphs, self-similarity, category of paths, left cancellative small categories, Zappa-Szep products, Toeplitz algebras, Cuntz-Krieger algebras
Keywords: Groups, graphs, self-similarity, category of paths, left cancellative small categories, Zappa-Szep products, Toeplitz algebras, Cuntz-Krieger algebras
@article{TAC_2018_33_a41,
author = {Erik Bedos and S. Kaliszewski and John Quigg and Jack Spielberg},
title = {On finitely aligned left cancellative small categories, {Zappa-Szep
products} and {Exel-Pardo} algebras},
journal = {Theory and applications of categories},
pages = {1346--1406},
publisher = {mathdoc},
volume = {33},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a41/}
}
TY - JOUR AU - Erik Bedos AU - S. Kaliszewski AU - John Quigg AU - Jack Spielberg TI - On finitely aligned left cancellative small categories, Zappa-Szep products and Exel-Pardo algebras JO - Theory and applications of categories PY - 2018 SP - 1346 EP - 1406 VL - 33 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2018_33_a41/ LA - en ID - TAC_2018_33_a41 ER -
%0 Journal Article %A Erik Bedos %A S. Kaliszewski %A John Quigg %A Jack Spielberg %T On finitely aligned left cancellative small categories, Zappa-Szep products and Exel-Pardo algebras %J Theory and applications of categories %D 2018 %P 1346-1406 %V 33 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2018_33_a41/ %G en %F TAC_2018_33_a41
Erik Bedos; S. Kaliszewski; John Quigg; Jack Spielberg. On finitely aligned left cancellative small categories, Zappa-Szep products and Exel-Pardo algebras. Theory and applications of categories, Tome 33 (2018), pp. 1346-1406. http://geodesic.mathdoc.fr/item/TAC_2018_33_a41/