New exactness conditions involving split cubes in protomodular categories
Theory and applications of categories, Tome 33 (2018), pp. 1031-1058.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce and compare several new exactness conditions involving what we call split cubes. These conditions are motivated by their special cases, some which become familiar, in the pointed context, once we reformulate them with split cubes replaced with split extensions.
Publié le :
Classification : 18A10, 18A25, 18A30
Keywords: protomodular category, split cube, van Kampen Theorem, non-pointed coincidence of commutators, normality inside unions, partially multiplicative graph, descent
@article{TAC_2018_33_a32,
     author = {J. R. A. Gray and N. Martins-Ferreira},
     title = {New exactness conditions involving split cubes in protomodular categories},
     journal = {Theory and applications of categories},
     pages = {1031--1058},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a32/}
}
TY  - JOUR
AU  - J. R. A. Gray
AU  - N. Martins-Ferreira
TI  - New exactness conditions involving split cubes in protomodular categories
JO  - Theory and applications of categories
PY  - 2018
SP  - 1031
EP  - 1058
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a32/
LA  - en
ID  - TAC_2018_33_a32
ER  - 
%0 Journal Article
%A J. R. A. Gray
%A N. Martins-Ferreira
%T New exactness conditions involving split cubes in protomodular categories
%J Theory and applications of categories
%D 2018
%P 1031-1058
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a32/
%G en
%F TAC_2018_33_a32
J. R. A. Gray; N. Martins-Ferreira. New exactness conditions involving split cubes in protomodular categories. Theory and applications of categories, Tome 33 (2018), pp. 1031-1058. http://geodesic.mathdoc.fr/item/TAC_2018_33_a32/