New exactness conditions involving split cubes in protomodular categories
Theory and applications of categories, Tome 33 (2018), pp. 1031-1058
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We introduce and compare several new exactness conditions involving what we call split cubes. These conditions are motivated by their special cases, some which become familiar, in the pointed context, once we reformulate them with split cubes replaced with split extensions.
Publié le :
Classification :
18A10, 18A25, 18A30
Keywords: protomodular category, split cube, van Kampen Theorem, non-pointed coincidence of commutators, normality inside unions, partially multiplicative graph, descent
Keywords: protomodular category, split cube, van Kampen Theorem, non-pointed coincidence of commutators, normality inside unions, partially multiplicative graph, descent
@article{TAC_2018_33_a32,
author = {J. R. A. Gray and N. Martins-Ferreira},
title = {New exactness conditions involving split cubes in protomodular categories},
journal = {Theory and applications of categories},
pages = {1031--1058},
publisher = {mathdoc},
volume = {33},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a32/}
}
TY - JOUR AU - J. R. A. Gray AU - N. Martins-Ferreira TI - New exactness conditions involving split cubes in protomodular categories JO - Theory and applications of categories PY - 2018 SP - 1031 EP - 1058 VL - 33 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2018_33_a32/ LA - en ID - TAC_2018_33_a32 ER -
J. R. A. Gray; N. Martins-Ferreira. New exactness conditions involving split cubes in protomodular categories. Theory and applications of categories, Tome 33 (2018), pp. 1031-1058. http://geodesic.mathdoc.fr/item/TAC_2018_33_a32/