Dualizing cartesian and cocartesian fibrations
Theory and applications of categories, Tome 33 (2018), pp. 67-94.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

In this technical note, we proffer a very explicit construction of the dual cocartesian fibration of a cartesian fibration, and we show they are classified by the same functor to the $\infty$-category of $\infty$-categories.
Publié le :
Classification : 18D30
Keywords: cocartesian fibrations, cartesian fibrations, quasicategories
@article{TAC_2018_33_a3,
     author = {Clark Barwick and Saul Glasman and Denis Nardin},
     title = {Dualizing cartesian and cocartesian fibrations},
     journal = {Theory and applications of categories},
     pages = {67--94},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a3/}
}
TY  - JOUR
AU  - Clark Barwick
AU  - Saul Glasman
AU  - Denis Nardin
TI  - Dualizing cartesian and cocartesian fibrations
JO  - Theory and applications of categories
PY  - 2018
SP  - 67
EP  - 94
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a3/
LA  - en
ID  - TAC_2018_33_a3
ER  - 
%0 Journal Article
%A Clark Barwick
%A Saul Glasman
%A Denis Nardin
%T Dualizing cartesian and cocartesian fibrations
%J Theory and applications of categories
%D 2018
%P 67-94
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a3/
%G en
%F TAC_2018_33_a3
Clark Barwick; Saul Glasman; Denis Nardin. Dualizing cartesian and cocartesian fibrations. Theory and applications of categories, Tome 33 (2018), pp. 67-94. http://geodesic.mathdoc.fr/item/TAC_2018_33_a3/