Dualizing cartesian and cocartesian fibrations
Theory and applications of categories, Tome 33 (2018), pp. 67-94
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
In this technical note, we proffer a very explicit construction of the dual cocartesian fibration of a cartesian fibration, and we show they are classified by the same functor to the $\infty$-category of $\infty$-categories.
Publié le :
Classification :
18D30
Keywords: cocartesian fibrations, cartesian fibrations, quasicategories
Keywords: cocartesian fibrations, cartesian fibrations, quasicategories
@article{TAC_2018_33_a3,
author = {Clark Barwick and Saul Glasman and Denis Nardin},
title = {Dualizing cartesian and cocartesian fibrations},
journal = {Theory and applications of categories},
pages = {67--94},
publisher = {mathdoc},
volume = {33},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a3/}
}
Clark Barwick; Saul Glasman; Denis Nardin. Dualizing cartesian and cocartesian fibrations. Theory and applications of categories, Tome 33 (2018), pp. 67-94. http://geodesic.mathdoc.fr/item/TAC_2018_33_a3/