Spark complexes on good effective orbifold atlases categorically
Theory and applications of categories, Tome 33 (2018), pp. 784-812
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
Good atlases are defined for effective orbifolds, and a spark complex is constructed on each good atlas. It is proved that this process is 2-functorial with compatible systems playing as morphisms between good atlases, and that the spark character 2-functor factors through this 2-functor.
Publié le :
Classification :
57R18, 18D05, 53C08
Keywords: good effective orbifold atlas, compatible system, spark complex, spark homomorphism, spark homotopy, spark character
Keywords: good effective orbifold atlas, compatible system, spark complex, spark homomorphism, spark homotopy, spark character
@article{TAC_2018_33_a25,
author = {Cheng-Yong Du and Lili Shen and Xiaojuan Zhao},
title = {Spark complexes on good effective orbifold atlases categorically},
journal = {Theory and applications of categories},
pages = {784--812},
publisher = {mathdoc},
volume = {33},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a25/}
}
TY - JOUR AU - Cheng-Yong Du AU - Lili Shen AU - Xiaojuan Zhao TI - Spark complexes on good effective orbifold atlases categorically JO - Theory and applications of categories PY - 2018 SP - 784 EP - 812 VL - 33 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2018_33_a25/ LA - en ID - TAC_2018_33_a25 ER -
Cheng-Yong Du; Lili Shen; Xiaojuan Zhao. Spark complexes on good effective orbifold atlases categorically. Theory and applications of categories, Tome 33 (2018), pp. 784-812. http://geodesic.mathdoc.fr/item/TAC_2018_33_a25/