On the normally ordered tensor product and duality for Tate objects
Theory and applications of categories, Tome 33 (2018), pp. 296-349.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

This paper generalizes the normally ordered tensor product from Tate vector spaces to Tate objects over arbitrary exact categories. We show how to lift bi-right exact monoidal structures, duality functors, and construct external Homs. We list some applications: (1) Adeles of a flag can be written as ordered tensor products; (2) Intersection numbers can be interpreted via these tensor products; (3) Pontryagin duality uniquely extends to n-Tate objects in locally compact abelian groups.
Classification : 14A22, 18B30
Keywords: Tate vector space, Tate object, normally ordered product, higher adeles, higher local fields
@article{TAC_2018_33_a12,
     author = {O. Braunling and M. Groechenig and A. Heleodoro and J. Wolfson},
     title = {On the normally ordered tensor product and duality for {Tate} objects},
     journal = {Theory and applications of categories},
     pages = {296--349},
     publisher = {mathdoc},
     volume = {33},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a12/}
}
TY  - JOUR
AU  - O. Braunling
AU  - M. Groechenig
AU  - A. Heleodoro
AU  - J. Wolfson
TI  - On the normally ordered tensor product and duality for Tate objects
JO  - Theory and applications of categories
PY  - 2018
SP  - 296
EP  - 349
VL  - 33
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2018_33_a12/
LA  - en
ID  - TAC_2018_33_a12
ER  - 
%0 Journal Article
%A O. Braunling
%A M. Groechenig
%A A. Heleodoro
%A J. Wolfson
%T On the normally ordered tensor product and duality for Tate objects
%J Theory and applications of categories
%D 2018
%P 296-349
%V 33
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2018_33_a12/
%G en
%F TAC_2018_33_a12
O. Braunling; M. Groechenig; A. Heleodoro; J. Wolfson. On the normally ordered tensor product and duality for Tate objects. Theory and applications of categories, Tome 33 (2018), pp. 296-349. http://geodesic.mathdoc.fr/item/TAC_2018_33_a12/