Voir la notice de l'article provenant de la source Theory and Applications of Categories website
It is known since the late 1960's that the dual of the category of compact Hausdorff spaces and continuous maps is a variety - not finitary, but bounded by $\aleph_1$. In this note we show that the dual of the category of partially ordered compact spaces and monotone continuous maps is an $\aleph_1$-ary quasivariety, and describe partially its algebraic theory. Based on this description, we extend these results to categories of Vietoris coalgebras and homomorphisms on ordered compact spaces. We also characterise the $\aleph_1$-copresentable partially ordered compact spaces.
@article{TAC_2018_33_a11, author = {Dirk Hofmann and Renato Neves and Pedro Nora}, title = {Generating the algebraic theory of {C(X):} the case of partially ordered compact spaces}, journal = {Theory and applications of categories}, pages = {276--295}, publisher = {mathdoc}, volume = {33}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2018_33_a11/} }
TY - JOUR AU - Dirk Hofmann AU - Renato Neves AU - Pedro Nora TI - Generating the algebraic theory of C(X): the case of partially ordered compact spaces JO - Theory and applications of categories PY - 2018 SP - 276 EP - 295 VL - 33 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2018_33_a11/ LA - en ID - TAC_2018_33_a11 ER -
%0 Journal Article %A Dirk Hofmann %A Renato Neves %A Pedro Nora %T Generating the algebraic theory of C(X): the case of partially ordered compact spaces %J Theory and applications of categories %D 2018 %P 276-295 %V 33 %I mathdoc %U http://geodesic.mathdoc.fr/item/TAC_2018_33_a11/ %G en %F TAC_2018_33_a11
Dirk Hofmann; Renato Neves; Pedro Nora. Generating the algebraic theory of C(X): the case of partially ordered compact spaces. Theory and applications of categories, Tome 33 (2018), pp. 276-295. http://geodesic.mathdoc.fr/item/TAC_2018_33_a11/