Witt vectors and truncation posets
Theory and applications of categories, Tome 32 (2017), pp. 258-285
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
One way to define Witt vectors starts with a truncation set $S \subset N$. We generalize Witt vectors to truncation posets, and show how three types of maps of truncation posets can be used to encode the following six structure maps on Witt vectors: addition, multiplication, restriction, Frobenius, Verschiebung and norm.
Publié le :
Classification :
13F35
Keywords: Witt vectors, truncation posets, Tambara functors
Keywords: Witt vectors, truncation posets, Tambara functors
@article{TAC_2017_32_a7,
author = {Vigleik Angeltveit},
title = {Witt vectors and truncation posets},
journal = {Theory and applications of categories},
pages = {258--285},
publisher = {mathdoc},
volume = {32},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a7/}
}
Vigleik Angeltveit. Witt vectors and truncation posets. Theory and applications of categories, Tome 32 (2017), pp. 258-285. http://geodesic.mathdoc.fr/item/TAC_2017_32_a7/