Witt vectors and truncation posets
Theory and applications of categories, Tome 32 (2017), pp. 258-285.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

One way to define Witt vectors starts with a truncation set $S \subset N$. We generalize Witt vectors to truncation posets, and show how three types of maps of truncation posets can be used to encode the following six structure maps on Witt vectors: addition, multiplication, restriction, Frobenius, Verschiebung and norm.
Publié le :
Classification : 13F35
Keywords: Witt vectors, truncation posets, Tambara functors
@article{TAC_2017_32_a7,
     author = {Vigleik Angeltveit},
     title = {Witt vectors and truncation posets},
     journal = {Theory and applications of categories},
     pages = {258--285},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a7/}
}
TY  - JOUR
AU  - Vigleik Angeltveit
TI  - Witt vectors and truncation posets
JO  - Theory and applications of categories
PY  - 2017
SP  - 258
EP  - 285
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a7/
LA  - en
ID  - TAC_2017_32_a7
ER  - 
%0 Journal Article
%A Vigleik Angeltveit
%T Witt vectors and truncation posets
%J Theory and applications of categories
%D 2017
%P 258-285
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a7/
%G en
%F TAC_2017_32_a7
Vigleik Angeltveit. Witt vectors and truncation posets. Theory and applications of categories, Tome 32 (2017), pp. 258-285. http://geodesic.mathdoc.fr/item/TAC_2017_32_a7/