Homotopy theory for algebras over polynomial monads
Theory and applications of categories, Tome 32 (2017), pp. 148-253.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We study the existence and left properness of transferred model structures for ``monoid-like'' objects in monoidal model categories. These include genuine monoids, but also all kinds of operads as for instance symmetric, cyclic, modular, higher operads, properads and PROP's. All these structures can be realised as algebras over polynomial monads.We give a general condition for a polynomial monad which ensures the existence and (relative) left properness of a transferred model structure for its algebras. This condition is of a combinatorial nature and singles out a special class of polynomial monads which we call tame polynomial. Many important monads are shown to be tame polynomial.
Publié le :
Classification : 18D20, 18D50, 55P48
Keywords: Quillen model category, polynomial monad, coloured operad, graph
@article{TAC_2017_32_a5,
     author = {M. A. Batanin and C. Berger},
     title = {Homotopy theory for algebras over polynomial monads},
     journal = {Theory and applications of categories},
     pages = {148--253},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a5/}
}
TY  - JOUR
AU  - M. A. Batanin
AU  - C. Berger
TI  - Homotopy theory for algebras over polynomial monads
JO  - Theory and applications of categories
PY  - 2017
SP  - 148
EP  - 253
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a5/
LA  - en
ID  - TAC_2017_32_a5
ER  - 
%0 Journal Article
%A M. A. Batanin
%A C. Berger
%T Homotopy theory for algebras over polynomial monads
%J Theory and applications of categories
%D 2017
%P 148-253
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a5/
%G en
%F TAC_2017_32_a5
M. A. Batanin; C. Berger. Homotopy theory for algebras over polynomial monads. Theory and applications of categories, Tome 32 (2017), pp. 148-253. http://geodesic.mathdoc.fr/item/TAC_2017_32_a5/