Voir la notice de l'article provenant de la source Theory and Applications of Categories website
The purpose of this paper is two-fold. A first and more concrete aim is to characterise n-permutable categories through certain stability properties of regular epimorphisms. These characterisations allow us to recover the ternary terms and the (n+1)-ary terms describing n-permutable varieties of universal algebras.
A second and more abstract aim is to explain two proof techniques, by
using the above characterisation as an opportunity to provide explicit
new examples of their use:
- an embedding theorem for n-permutable categories which allows
us to follow the varietal proof to show that an n-permutable category
has certain properties;
- the theory of unconditional exactness properties which allows us
to remove the assumption of the existence of colimits,
in particular when we use the approximate co-operations approach
to show that a regular category is n-permutable.
@article{TAC_2017_32_a44, author = {Pierre-Alain Jacqmin and Diana Rodelo}, title = {Stability properties characterising n-permutable categories}, journal = {Theory and applications of categories}, pages = {1563--1587}, publisher = {mathdoc}, volume = {32}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a44/} }
TY - JOUR AU - Pierre-Alain Jacqmin AU - Diana Rodelo TI - Stability properties characterising n-permutable categories JO - Theory and applications of categories PY - 2017 SP - 1563 EP - 1587 VL - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2017_32_a44/ LA - en ID - TAC_2017_32_a44 ER -
Pierre-Alain Jacqmin; Diana Rodelo. Stability properties characterising n-permutable categories. Theory and applications of categories, Tome 32 (2017), pp. 1563-1587. http://geodesic.mathdoc.fr/item/TAC_2017_32_a44/