Approximate categorical structures
Theory and applications of categories, Tome 32 (2017), pp. 1522-1562.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We consider notions of metrized categories, and then approximate categorical structures defined by a function of three variables generalizing the notion of 2-metric space. We prove an embedding theorem giving sufficient conditions for an approximate categorical structure to come from an inclusion into a metrized category.
Publié le :
Classification : Primary 18A05, Secondary 54E35, 08A72
Keywords: metric, $2$-metric space, category, functor, Yoneda embedding, bimodule, path, triangle
@article{TAC_2017_32_a43,
     author = {Abdelkrim Aliouche and Carlos Simpson},
     title = {Approximate categorical structures},
     journal = {Theory and applications of categories},
     pages = {1522--1562},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a43/}
}
TY  - JOUR
AU  - Abdelkrim Aliouche
AU  - Carlos Simpson
TI  - Approximate categorical structures
JO  - Theory and applications of categories
PY  - 2017
SP  - 1522
EP  - 1562
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a43/
LA  - en
ID  - TAC_2017_32_a43
ER  - 
%0 Journal Article
%A Abdelkrim Aliouche
%A Carlos Simpson
%T Approximate categorical structures
%J Theory and applications of categories
%D 2017
%P 1522-1562
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a43/
%G en
%F TAC_2017_32_a43
Abdelkrim Aliouche; Carlos Simpson. Approximate categorical structures. Theory and applications of categories, Tome 32 (2017), pp. 1522-1562. http://geodesic.mathdoc.fr/item/TAC_2017_32_a43/