Approximate categorical structures
Theory and applications of categories, Tome 32 (2017), pp. 1522-1562
Cet article a éte moissonné depuis la source Theory and Applications of Categories website
We consider notions of metrized categories, and then approximate categorical structures defined by a function of three variables generalizing the notion of 2-metric space. We prove an embedding theorem giving sufficient conditions for an approximate categorical structure to come from an inclusion into a metrized category.
Publié le :
Classification :
Primary 18A05, Secondary 54E35, 08A72
Keywords: metric, $2$-metric space, category, functor, Yoneda embedding, bimodule, path, triangle
Keywords: metric, $2$-metric space, category, functor, Yoneda embedding, bimodule, path, triangle
@article{TAC_2017_32_a43,
author = {Abdelkrim Aliouche and Carlos Simpson},
title = {Approximate categorical structures},
journal = {Theory and applications of categories},
pages = {1522--1562},
year = {2017},
volume = {32},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a43/}
}
Abdelkrim Aliouche; Carlos Simpson. Approximate categorical structures. Theory and applications of categories, Tome 32 (2017), pp. 1522-1562. http://geodesic.mathdoc.fr/item/TAC_2017_32_a43/