Topological properties of non-Archimedean approach spaces
Theory and applications of categories, Tome 32 (2017), pp. 1454-1484
Voir la notice de l'article provenant de la source Theory and Applications of Categories website
In this paper we give an isomorphic description of the category of non-Archimedian approach spaces as a category of lax algebras for the ultrafilter monad and an appropriate quantale. Non-Archimedean approach spaces are characterised as those approach spaces having a tower consisting of topologies. We study topological properties p, for p compactness and Hausdorff separation along with low-separation properties, regularity, normality and extremal disconnectedness and link these properties to the condition that all or some of the level topologies in the tower have p. A compactification technique is developed based on Shanin's method.
Publié le :
Classification :
18C15, 18C20, 54A05, 54B30, 54E99
Keywords: Lax algebra, quantale, non-Archimedean approach space, quasi-ultrametric space, initially dense object, topological properties in $(\beta, P_\wedge$-Cat, compactification
Keywords: Lax algebra, quantale, non-Archimedean approach space, quasi-ultrametric space, initially dense object, topological properties in $(\beta, P_\wedge$-Cat, compactification
@article{TAC_2017_32_a40,
author = {Eva Colebunders and Karen Van Opdenbosch},
title = {Topological properties of {non-Archimedean} approach spaces},
journal = {Theory and applications of categories},
pages = {1454--1484},
publisher = {mathdoc},
volume = {32},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a40/}
}
TY - JOUR AU - Eva Colebunders AU - Karen Van Opdenbosch TI - Topological properties of non-Archimedean approach spaces JO - Theory and applications of categories PY - 2017 SP - 1454 EP - 1484 VL - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TAC_2017_32_a40/ LA - en ID - TAC_2017_32_a40 ER -
Eva Colebunders; Karen Van Opdenbosch. Topological properties of non-Archimedean approach spaces. Theory and applications of categories, Tome 32 (2017), pp. 1454-1484. http://geodesic.mathdoc.fr/item/TAC_2017_32_a40/