Operads and phylogenetic trees
Theory and applications of categories, Tome 32 (2017), pp. 1397-1453.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We construct an operad Phyl whose operations are the edge-labelled trees used in phylogenetics. This operad is the coproduct of Com, the operad for commutative semigroups, and $[0,\infty)$, the operad with unary operations corresponding to nonnegative real numbers, where composition is addition. We show that there is a homeomorphism between the space of n-ary operations of Phyl and $\T_n\times [0,\infty)^{n+1}$, where $\T_n$ is the space of metric n-trees introduced by Billera, Holmes and Vogtmann. Furthermore, we show that the Markov models used to reconstruct phylogenetic trees from genome data give coalgebras of Phyl. These always extend to coalgebras of the larger operad Com + $[0,\infty]$, since Markov processes on finite sets converge to an equilibrium as time approaches infinity. We show that for any operad O, its coproduct with $[0,\infty]$ contains the operad W(O) constructed by Boardman and Vogt. To prove these results, we explicitly describe the coproduct of operads in terms of labelled trees.
Publié le :
Classification : 18D50
Keywords: operads, trees, phylogenetic trees, Markov processes
@article{TAC_2017_32_a39,
     author = {John C. Baez and Nina Otter},
     title = {Operads and phylogenetic trees},
     journal = {Theory and applications of categories},
     pages = {1397--1453},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a39/}
}
TY  - JOUR
AU  - John C. Baez
AU  - Nina Otter
TI  - Operads and phylogenetic trees
JO  - Theory and applications of categories
PY  - 2017
SP  - 1397
EP  - 1453
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a39/
LA  - en
ID  - TAC_2017_32_a39
ER  - 
%0 Journal Article
%A John C. Baez
%A Nina Otter
%T Operads and phylogenetic trees
%J Theory and applications of categories
%D 2017
%P 1397-1453
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a39/
%G en
%F TAC_2017_32_a39
John C. Baez; Nina Otter. Operads and phylogenetic trees. Theory and applications of categories, Tome 32 (2017), pp. 1397-1453. http://geodesic.mathdoc.fr/item/TAC_2017_32_a39/