Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We associate, in a functorial way, a monoidal bicategory Span|V to any monoidal bicategory V. Two examples of this construction are of particular interest: Hopf polyads of Bruguieres can be seen as Hopf monads in Span|Cat while Hopf group monoids in the spirit of Zunino and Turaev in a braided monoidal category V, and Hopf categories of Batista-Caenepeel-Vercruysse over V both turn out to be Hopf monads in Span|V. Hopf group monoids and Hopf categories are Hopf monads on a distinguished type of monoidales fitting the framework of Bohm-Lack. These examples are related by a monoidal pseudofunctor V -> Cat.
@article{TAC_2017_32_a36, author = {Gabriella B\"ohm}, title = {Hopf polyads, {Hopf} categories and {Hopf} group monoids viewed as {Hopf} monads}, journal = {Theory and applications of categories}, pages = {1229--1257}, publisher = {mathdoc}, volume = {32}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a36/} }
Gabriella Böhm. Hopf polyads, Hopf categories and Hopf group monoids viewed as Hopf monads. Theory and applications of categories, Tome 32 (2017), pp. 1229-1257. http://geodesic.mathdoc.fr/item/TAC_2017_32_a36/