A Dold-Kan theorem for simplicial Lie algebras
Theory and applications of categories, Tome 32 (2017), pp. 1165-1212.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We introduce and study hypercrossed complexes of Lie algebras, that is, non-negatively graded chain complexes of Lie algebras $L=(L_n,\partial_n)$ endowed with an additional structure by means of a suitable set of bilinear maps $L_r\times L_s\rightarrow L_n$. The Moore complex of any simplicial Lie algebra acquires such a structure and, in this way, we prove a Dold-Kan type equivalence between the category of simplicial Lie algebras and the category of hypercrossed complexes of Lie algebras. Several consequences of examining particular classes of hypercrossed complexes of Lie algebras are presented.
Publié le :
Classification : 55U10, 18G30, 18G50
Keywords: Dold-Kan theorem, simplicial Lie algebra, chain complex, Moore complex, hypercrossed complex
@article{TAC_2017_32_a33,
     author = {P. Carrasco and A.M. Cegarra},
     title = {A {Dold-Kan} theorem for simplicial {Lie} algebras},
     journal = {Theory and applications of categories},
     pages = {1165--1212},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a33/}
}
TY  - JOUR
AU  - P. Carrasco
AU  - A.M. Cegarra
TI  - A Dold-Kan theorem for simplicial Lie algebras
JO  - Theory and applications of categories
PY  - 2017
SP  - 1165
EP  - 1212
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a33/
LA  - en
ID  - TAC_2017_32_a33
ER  - 
%0 Journal Article
%A P. Carrasco
%A A.M. Cegarra
%T A Dold-Kan theorem for simplicial Lie algebras
%J Theory and applications of categories
%D 2017
%P 1165-1212
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a33/
%G en
%F TAC_2017_32_a33
P. Carrasco; A.M. Cegarra. A Dold-Kan theorem for simplicial Lie algebras. Theory and applications of categories, Tome 32 (2017), pp. 1165-1212. http://geodesic.mathdoc.fr/item/TAC_2017_32_a33/