Voir la notice de l'article provenant de la source Theory and Applications of Categories website
We define the notion of a $(P,\tilde{P})$-structure on a universe $p$ in a locally cartesian closed category category with a binary product structure and construct a $(\Pi,\lambda)$-structure on the C-systems $CC(C,p)$ from a $(P,\tilde{P})$-structure on $p$.We then define homomorphisms of C-systems with $(\Pi,\lambda)$-structures and functors of universe categories with $(P,\tilde{P})$-structures and show that our construction is functorial relative to these definitions.
@article{TAC_2017_32_a3, author = {Vladimir Voevodsky}, title = {The $(\Pi,\lambda)$-structures on the {C-systems} defined by universe categories}, journal = {Theory and applications of categories}, pages = {113--121}, publisher = {mathdoc}, volume = {32}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a3/} }
Vladimir Voevodsky. The $(\Pi,\lambda)$-structures on the C-systems defined by universe categories. Theory and applications of categories, Tome 32 (2017), pp. 113-121. http://geodesic.mathdoc.fr/item/TAC_2017_32_a3/