A Urysohn type lemma for groupoids
Theory and applications of categories, Tome 32 (2017), pp. 970-994.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Starting from the observation that through groupoids we can express in a unified way the notions of fundamental system of entourages of a uniform structure on a space X, respectively the system of neighborhoods of the unity of a topological group that determines its topology, we introduce in this paper a notion of G-uniformity for a groupoid G. The topology induced by a G-uniformity turns G into a topological locally transitive groupoid. We also prove a Urysohn type lemma for groupoids and obtain metrization theorems for groupoids unifying in two ways the Alexandroff-Urysohn Theorem and Birkhoff-Kakutani Theorem.
Publié le :
Classification : 22A22, 54E15, 54E35
Keywords: groupoid, Urysohn-type lemma, metrization theorem
@article{TAC_2017_32_a27,
     author = {Madalina Roxana Buneci},
     title = {A {Urysohn} type lemma for groupoids},
     journal = {Theory and applications of categories},
     pages = {970--994},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a27/}
}
TY  - JOUR
AU  - Madalina Roxana Buneci
TI  - A Urysohn type lemma for groupoids
JO  - Theory and applications of categories
PY  - 2017
SP  - 970
EP  - 994
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a27/
LA  - en
ID  - TAC_2017_32_a27
ER  - 
%0 Journal Article
%A Madalina Roxana Buneci
%T A Urysohn type lemma for groupoids
%J Theory and applications of categories
%D 2017
%P 970-994
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a27/
%G en
%F TAC_2017_32_a27
Madalina Roxana Buneci. A Urysohn type lemma for groupoids. Theory and applications of categories, Tome 32 (2017), pp. 970-994. http://geodesic.mathdoc.fr/item/TAC_2017_32_a27/