Connections in tangent categories
Theory and applications of categories, Tome 32 (2017), pp. 835-888.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Connections are an important tool of differential geometry. This paper investigates their definition and structure in the abstract setting of tangent categories. At this level of abstraction we derive several classically important results about connections, including the Bianchi identities, identities for curvature and torsion, almost complex structure, and parallel transport.
Publié le :
Classification : 18D99, 53B05, 53B15, 51K10
Keywords: Tangent categories, connections
@article{TAC_2017_32_a25,
     author = {J.R.B. Cockett and G.S.H. Cruttwell},
     title = {Connections in tangent categories},
     journal = {Theory and applications of categories},
     pages = {835--888},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a25/}
}
TY  - JOUR
AU  - J.R.B. Cockett
AU  - G.S.H. Cruttwell
TI  - Connections in tangent categories
JO  - Theory and applications of categories
PY  - 2017
SP  - 835
EP  - 888
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a25/
LA  - en
ID  - TAC_2017_32_a25
ER  - 
%0 Journal Article
%A J.R.B. Cockett
%A G.S.H. Cruttwell
%T Connections in tangent categories
%J Theory and applications of categories
%D 2017
%P 835-888
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a25/
%G en
%F TAC_2017_32_a25
J.R.B. Cockett; G.S.H. Cruttwell. Connections in tangent categories. Theory and applications of categories, Tome 32 (2017), pp. 835-888. http://geodesic.mathdoc.fr/item/TAC_2017_32_a25/