A property of effectivization and its uses in categorical logic
Theory and applications of categories, Tome 32 (2017), pp. 769-779.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We show that a fully faithful and covering regular functor between regular categories induces a fully faithful (and covering) functor between their respective effectivizations. Such a functor between effective categories is known to be an equivalence. We exploit this result in order to give a constructive proof of conceptual completeness for regular logic. We also use it in analyzing what it means for a morphism between effective categories to be a quotient in the 2-category of effective categories and regular functors between them.
Publié le :
Classification : 18C20, 18F20, 03G30
Keywords: regular category, effectivization, pretopos, conceptual completeness, quotient
@article{TAC_2017_32_a21,
     author = {Vasileios Aravantinos-Sotiropoulos and Panagis Karazeris},
     title = {A property of effectivization and its uses in categorical logic},
     journal = {Theory and applications of categories},
     pages = {769--779},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a21/}
}
TY  - JOUR
AU  - Vasileios Aravantinos-Sotiropoulos
AU  - Panagis Karazeris
TI  - A property of effectivization and its uses in categorical logic
JO  - Theory and applications of categories
PY  - 2017
SP  - 769
EP  - 779
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a21/
LA  - en
ID  - TAC_2017_32_a21
ER  - 
%0 Journal Article
%A Vasileios Aravantinos-Sotiropoulos
%A Panagis Karazeris
%T A property of effectivization and its uses in categorical logic
%J Theory and applications of categories
%D 2017
%P 769-779
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a21/
%G en
%F TAC_2017_32_a21
Vasileios Aravantinos-Sotiropoulos; Panagis Karazeris. A property of effectivization and its uses in categorical logic. Theory and applications of categories, Tome 32 (2017), pp. 769-779. http://geodesic.mathdoc.fr/item/TAC_2017_32_a21/