Closure operators in abelian categories and spectral spaces
Theory and applications of categories, Tome 32 (2017), pp. 719-735.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We give several new ways of constructing spectral spaces starting with objects in abelian categories satisfying certain conditions which apply, in particular, to Grothendieck categories. For this, we consider the spaces of invariants of closure operators acting on subobjects of a given object. The key to our results is a newly discovered criterion of Finocchiaro that uses ultrafilters to identify spectral spaces along with subbases of quasi-compact open sets.
Publié le :
Classification : 13B22, 14A05, 18E15, 54D80
Keywords: Spectral spaces, closure operators, abelian categories
@article{TAC_2017_32_a19,
     author = {Abhishek Banerjee},
     title = {Closure operators in abelian categories and spectral spaces},
     journal = {Theory and applications of categories},
     pages = {719--735},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a19/}
}
TY  - JOUR
AU  - Abhishek Banerjee
TI  - Closure operators in abelian categories and spectral spaces
JO  - Theory and applications of categories
PY  - 2017
SP  - 719
EP  - 735
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a19/
LA  - en
ID  - TAC_2017_32_a19
ER  - 
%0 Journal Article
%A Abhishek Banerjee
%T Closure operators in abelian categories and spectral spaces
%J Theory and applications of categories
%D 2017
%P 719-735
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a19/
%G en
%F TAC_2017_32_a19
Abhishek Banerjee. Closure operators in abelian categories and spectral spaces. Theory and applications of categories, Tome 32 (2017), pp. 719-735. http://geodesic.mathdoc.fr/item/TAC_2017_32_a19/