Frobenius algebras and homotopy fixed points of group actions on bicategories
Theory and applications of categories, Tome 32 (2017), pp. 652-681.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

We explicitly show that symmetric Frobenius structures on a finite-dimensional, semi-simple algebra stand in bijection to homotopy fixed points of the trivial SO(2)-action on the bicategory of finite-dimensional, semi-simple algebras, bimodules and intertwiners. The results are motivated by the 2-dimensional Cobordism Hypothesis for oriented manifolds, and can hence be interpreted in the realm of Topological Quantum Field Theory.
Publié le :
Classification : 18D05
Keywords: symmetric Frobenius algebras, homotopy fixed points, group actions on bicategories
@article{TAC_2017_32_a17,
     author = {Jan Hesse and Christoph Schweigert and Alessandro Valentino},
     title = {Frobenius algebras and homotopy fixed points of group actions on bicategories},
     journal = {Theory and applications of categories},
     pages = {652--681},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a17/}
}
TY  - JOUR
AU  - Jan Hesse
AU  - Christoph Schweigert
AU  - Alessandro Valentino
TI  - Frobenius algebras and homotopy fixed points of group actions on bicategories
JO  - Theory and applications of categories
PY  - 2017
SP  - 652
EP  - 681
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a17/
LA  - en
ID  - TAC_2017_32_a17
ER  - 
%0 Journal Article
%A Jan Hesse
%A Christoph Schweigert
%A Alessandro Valentino
%T Frobenius algebras and homotopy fixed points of group actions on bicategories
%J Theory and applications of categories
%D 2017
%P 652-681
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a17/
%G en
%F TAC_2017_32_a17
Jan Hesse; Christoph Schweigert; Alessandro Valentino. Frobenius algebras and homotopy fixed points of group actions on bicategories. Theory and applications of categories, Tome 32 (2017), pp. 652-681. http://geodesic.mathdoc.fr/item/TAC_2017_32_a17/