Algebraic databases
Theory and applications of categories, Tome 32 (2017), pp. 547-619.

Voir la notice de l'article provenant de la source Theory and Applications of Categories website

Databases have been studied category-theoretically for decades. While mathematically elegant, previous categorical models have typically struggled withrepresenting concrete data such as integers or strings.In the present work, we propose an extension of the earlier set-valued functor model, making use of multi-sorted algebraic theories (a.k.a. Lawvere theories) to incorporate concrete data in a principled way. This approach easily handles missing information (null values), and also allows constraints and queries to make use of operations on data, such as multiplication or comparison of numbers, helping to bridge the gap between traditional databases and programming languages.We also show how all of the components of our model - including schemas, instances, change-of-schema functors, and queries fit into a single double categorical structure called a proarrow equipment (a.k.a. framed bicategory).
Publié le :
Classification : 18C10, 18D05, 68P15
Keywords: Databases, algebraic theories, proarrow equipments, collage construction, data migration
@article{TAC_2017_32_a15,
     author = {Patrick Schultz and David I. Spivak and Christina Vasilakopoulou and Ryan Wisnesky},
     title = {Algebraic databases},
     journal = {Theory and applications of categories},
     pages = {547--619},
     publisher = {mathdoc},
     volume = {32},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TAC_2017_32_a15/}
}
TY  - JOUR
AU  - Patrick Schultz
AU  - David I. Spivak
AU  - Christina Vasilakopoulou
AU  - Ryan Wisnesky
TI  - Algebraic databases
JO  - Theory and applications of categories
PY  - 2017
SP  - 547
EP  - 619
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TAC_2017_32_a15/
LA  - en
ID  - TAC_2017_32_a15
ER  - 
%0 Journal Article
%A Patrick Schultz
%A David I. Spivak
%A Christina Vasilakopoulou
%A Ryan Wisnesky
%T Algebraic databases
%J Theory and applications of categories
%D 2017
%P 547-619
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TAC_2017_32_a15/
%G en
%F TAC_2017_32_a15
Patrick Schultz; David I. Spivak; Christina Vasilakopoulou; Ryan Wisnesky. Algebraic databases. Theory and applications of categories, Tome 32 (2017), pp. 547-619. http://geodesic.mathdoc.fr/item/TAC_2017_32_a15/